Thermosensitive molecularly imprinted polymers on porous carriers: preparation, characterization and properties as novel adsorbents for bisphenol A.

نویسندگان

  • Ruichen Dong
  • Jinhua Li
  • Hua Xiong
  • Wenhui Lu
  • Hailong Peng
  • Lingxin Chen
چکیده

Thermosensitive molecularly imprinted polymers (T-MIPs) on porous carriers were prepared via the synergy of dual functional monomers of 4-vinylpyridine (VP) and N-isopropylacrylamide (NIPAM), for selective recognition and controlled adsorption and release of bisphenol A (BPA) by the temperature regulation. The porous polymer supporter was synthesized by multistep swelling of polystyrene and then both the NIPAM with temperature responsiveness and the basic monomers of VP were grafted on them in a simple way. The resultant T-MIPs showed high binding capacity, fast kinetics, and the adsorption processes were found to follow Langmuir-Freundlich isotherm and pseudo-second-order kinetic models. The adsorption capacity increased slightly along with the rise of temperature (such as 20°C) under lower critical solution temperature (LCST, 33°C) and decreased fast above LCST (such as 50°C). Subsequently, the T-MIPs were employed as novel adsorbents for selective solid-phase extraction (SPE) of BPA from seawater and yogurt samples. Satisfying recoveries in the range of 94.83-98.47% were obtained with the precision of 3.21% at ambient temperature (20°C). Through 6 adsorption-desorption cycles, the reusable T-MIPs exhibited a good recoverability with the relative standard error within 9.8%. The smart T-MIPs provided great potentials for selective identification, adsorption/release and removal of BPA by simple stimuli responsive regulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separation of ‎STIGMA STEROL using magnetic molecularly imprinted nanopolymer fabricated by sol-gel method

Background & Aims: Magnetically molecularly imprinted polymers (MMIPs) are assumed as kind of sorbent polymers ‎which can separate or determine bioactive compounds from environment fast and specifically.  ‎Magnetic properties, stability at various conditions (temperature , ionic strength and pH) and selective ‎function are among the advantages of these polymers in determin...

متن کامل

Synthesis of a nanoporous molecularly imprinted polymers for dibutyl Phthalate extracted from Trichoderma Harzianum

In this study, molecularly imprinted polymers were synthesized for dibutyl phthalate as a bioactive chemical compound with antifungal activity which produced by Trichoderma Harzianum (JX1738521). The molecularly imprinted polymers were synthesized via precipitation polymerization method from methacrylic acid, dibutyl phthalate and trimetylolpropantrimethacrylate as a functional monomer, templat...

متن کامل

Synthesis and Evaluating of Nanoporous Molecularly Imprinted Polymers for Extraction of Quercetin as a Bioactive Component of Medicinal Plants

In this work, the template, monomer, and cross-linker with the ratio of 1:8:40 were used to synthesize Molecularly Imprinted Polymers (MIPs) for extraction of the bioactive chemical compounds from some traditional herbs as a sorbent material. Quercetin, Methacrylic Acid (MAA), Trimethylolpropanetrimethacrylate (TRIM) and Tetrahydrofuran (THF) were used as a template, funct...

متن کامل

Steady-State Fluorescence Anisotropy Studies of Molecularly Imprinted Polymer Sensors

Molecularly imprinted polymers (MIPs) are used as recognition elements in biochemical sensors. In a fluorescence-based MIP sensor system, it can be difficult to distinguish the analyte fluorescence from the fluorescence of the polymer itself. We studied steady-state fluorescence anisotropy of anthracene imprinted in a polymer (polyurethane) matrix. Vertically polarized excitation light was inci...

متن کامل

Molecularly Imprinted Filtering Adsorbents for Odor Sensing

Versatile odor sensors that can discriminate among huge numbers of environmental odorants are desired in many fields, including robotics, environmental monitoring, and food production. However, odor sensors comparable to an animal's nose have not yet been developed. An animal's olfactory system recognizes odor clusters with specific molecular properties and uses this combinatorial information i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Talanta

دوره 130  شماره 

صفحات  -

تاریخ انتشار 2014